Monday, November 07, 2005

mammalian sleep

Clues to the functions of mammalian sleep
Jerome M. Siegel1,Nature 437, 1264-1271 (27 October 2005) doi: 10.1038/nature04285

Top of pageAbstractThe functions of mammalian sleep remain unclear. Most theories suggest a role for non-rapid eye movement (NREM) sleep in energy conservation and in nervous system recuperation. Theories of REM sleep have suggested a role for this state in periodic brain activation during sleep, in localized recuperative processes and in emotional regulation. Across mammals, the amount and nature of sleep are correlated with age, body size and ecological variables, such as whether the animals live in a terrestrial or an aquatic environment, their diet and the safety of their sleeping site. Sleep may be an efficient time for the completion of a number of functions, but variations in sleep expression indicate that these functions may differ across species.

Saying that it is desirable to be well rested and that the body seeks lost sleep with a vigour comparable to or greater than that displayed for food or sex does not answer the question of the functional role of sleep. Why do we spend one-third of our lives asleep? Why has our body evolved to press us relentlessly to make up for lost sleep? Can we separate the drive for sleep, manifested in sleepiness, from the function of sleep, as we can separate hunger from the benefits of food consumption? Why do so many species habitually sleep much more than humans, and others much less, and how do species that sleep for only short periods accomplish the functions of sleep in less time? Why does the daily sleep amount decrease from birth to maturity in all species of terrestrial mammals? And why do we have two kinds of sleep, rapid eye movement (REM) and non-REM (NREM) sleep?

Sleep can be defined as a state of immobility with greatly reduced responsiveness, which can be distinguished from coma or anaesthesia by its rapid reversibility. An additional defining characteristic of sleep is that when it is prevented, the body tries to recover the lost amount. The existence of sleep 'rebound' after deprivation1 demonstrates that sleep is not simply a period of reduced activity or alertness regulated by circadian or ultradian rhythms, a phenomenon that can be seen even in non-sleeping organisms2, 3, 4.

Read the rest here.


Post a Comment

<< Home